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Abstract

Some asymptotic results for a kernel type estimator of the quantile

function from right-censored data are obtained. The estimator is defined

by n(p) - h 1 Q(t)K((t-p)/hn)dt, which is smoother than the usual

product-limit quantile function Q n(p) - inf{t: F n(t) k p), where F denotes

the product-limit estimator of the lifetime distribution F . Under the random

censorship model and general conditions on hn ,K, and F0 , the asymptotic

normality of Qn(p) is proven. In addition, an approximation to n is

shown to be asymptotically uniformly equivalent to Qn in mean square.
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1.- Introduction
,\

In reliability and medical studies, it is often of interest to estimate

various quantiles of the unknown lifetime distribution. In particular, the

median lifetime and extreme quantiles are of interest to the experimenter in

such studies. In many life testing and medical follow-up experiments, however,

arbitrarily right-censored data arise, and it is important to be able to esti-

mate the quantiles of interest based on the censored data. For such data,

some kernel-type quantile estimators are considered in this paper which give

smoother estimates than the usual product-limit quantile function. -- t 2 ,

For any probability distribution function G, denote the quantile function

by Q(p) B G-1 (p) - inf{x: G(x) 2 p), 0 5 p 5 1. For a random (uncensored)

sample Y ,...,Y from G, the sample quantile function C-l(p) - inf{x: G (x) p1,
1 n n n

0 : p : 1, has been used to estimate Q(p), where G denotes the sample

distribution function. Csorgff (1983) gave many of the known results concerning

* -1G (p). Also, Falk (1984) studied the relative deficiency of the sample quantile
n

with respect to kernel-type estimators, and Falk (1985) obtained asymptotic

normality for kernel estimators. Yang (1985) has obtained some convergence

properties of kernel estimators of Q(p) and gave some simulation results compar-

ing kernel-type estimators with other estimators. For arbitrarily right-censored

data, Sander (1975) proposed estimation of Q(p) by the quantile function of the

product-limit estimator, and she and Cheng (1981) derived some asymptotic

properties of that estimator. Also, Cslrg6 (1983) presented strong approximation

results for that estimator.

Recently, Padgett (1985) studied a smoothed nonparametric estimator of
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Q(p) from arbitrarily right-censored data based on the kernel method. It was

shown that his estimator, mentioned briefly by Parzen (1979, p. 119), was

strongly consistent, and a small Monte Carlo study was performed to compare

the estimator with the product-limit estimator. In addition, a simple approxima-

tion to this kernel estimator was shown to be almost surely asymptotically

equivalent to it.

The purpose of this paper is to further study the asymptotic properties

of the estimators proposed by Padgett (1985). In particular, the asymptotic

normality will be proven, and the asymptotic equivalence in mean square of the

estimator and its approximation will be shown under general conditions on the

kernel function, bandwidth sequence, lifetime distribution, and censoring

mechanism.

2. Notation and Preliminaries

Let X0 ,X2 ...,Xn denote the true survival times of n items or

individuals which are censored on the right by a sequence U1,U2,...,U n

which in general may be either constants or random variables. It is assumed

that the Xo's are nonnegative independent identically distributed random
i

variables with common unknown distribution function F and unknown quantileo

function

Q0 (p) 0 = - infft: F (t) k p), 0 S p 5 1.

The observed right-censored data are denoted by the pairs (XVLi), i-l,...,n,

where

",Wmin(xO1 'i = iz if xO 5Ui

0 if i >

en . .... .. ,., !..
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For the asymptotic results of this paper, the random right-censorship model

will be assumed, that is, UI,...,U n  constitute a random sample from a distri-

bution H (usually unknown) and are independent of 0,...,X . The distributionXi n

function of each Xi , i1l,...,n, is then F - 1 - (1-F )(1-H).

A popular estimator of the survival function S0 (t) = 1 - F (t) based on

(Xi i l,...,n, is the product-limit estimator, proposed by Kaplan and

Meier (1958) as the "nonparametric maximum likelihood estimator." Let

(Zi,Av) , i=l,...,n, denote the ordered Xi's along with their corresponding

A's. The product-limit estimator of So(t), shown to be "self-consistent"

by Efron (1967), is defined by

1, 0 < t < ZI

k-i
P n(t) - n-l) I Zk-1 < t -< Zk, k-2,...,nn 511

0, t > Z nn

Denote the product-limit estimator of F (t) by FnCt) = 1 - P(t), and let

s denote the jump of Pn at Z , that is

1 - Pn(Z2), J 1

P(Z)-Pn(Zj+) J = 2,.,n-

Pn(Z n), j =n.

Note that a WO if and only if A - 0, j < n, i.e. whenever Z is ai

censored observation. Also, denote Si F (Zi1 ) E s , i1,...,n, with
i i+ j=l

0 0, Z0  0, and Zn+1 m Z + c, for some positive constant c.

It is natural to estimate 0 by the product-limit quantile function
p

Qn(p) =; - inf(t: Fn(t) z p}. Sander (1975) and Cheng (1981) obtained
. ." . p n
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asymptotic normality results for . Padgett (1985) smoothed Q by the

kernel method to obtain the estimator

%n(p) - h I  o f Qn(t)K(Ct-p)/h )dt

n Si

-h1  KZ I K((t-p)/hn)dt, (2.1)
i-i i-i

where K is an appropriate kernel function and (h I is a bandwidth sequence.n

Also, a simpler kernel-type estimator which is an approximation to (2.1) was

defined by

* -l n
n hn E ZiS i K((Si - p)/hn). (2.2)

i=l

Note that only the uncensored observations actually appear in the sums of (2.1)

and (2.2).

In the next section, the asymptotic normality of Q n(p) and Q n(p) will

be obtained. The following general conditions on the kernel function, the

bandwidth sequence, and the lifetime and censoring distributions will be assumed:

(h.1) h . 0 as n ) -;
n

(K.1) K(x) is a bounded probability density function which has finite

support, i.e. K(x) - 0 for Ixf > c for some c > 0;

(K.2) K is symmetric about zero;

(K.3) K satisfies a Lipschitz condition, i.e. there exist a constant

r such that for all x,y,

JK(x) - K(y)j : rix - yI;

(F.1) F is continuous with density function f0 ; and

(F.2) H(TF ) 1, where TF  M sup{t: F (t) < 11.F0o
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It should be noted that these conditions are not prohibitive and (F.1) and

(F.2) are similar to conditions required by Cheng (1981). Also, (F.2) insures

that observations will be available from the entire support of F0 , a common

condition in random right-censorship models.

3. The Main Results

In this section, the main results are summarized in Theorems 3.1 and 3.2.

The proofs will be presented in the next section. Theorem 3.1 gives conditions

for the asymptotic normality of Qn(p). The asymptotic uniform mean-squared

equivalence of On and Qn will be shown in Theorem 3.2.

Theorem 3.1. Assume, in addition to conditions (h.1), (K.1) - (K.3), (F.1),

and (F.2), that the derivative f' is continuous at C and f ( ° ) > 0.
0 p o p

Suppose (h } is such that n1/4h n 0 as n* . Then for 0 < p < T,n n

where T < 1, as n -o -, n[Qn(p) - QO(p)] -, Z in distribution, where Z

is a normally distributed random variable with mean zero and variance

2 0 dP(u)
a - fop [1 - F(u)] 2 0
p 0 f(2 Q)

0op

with 1 - F(u) - [1 - F (u)][l - H(u)] and F (u) = P(Xi < u, A, M 1), the
0 0

subdistribution function of the uncensored observations.

Note that an example of a bandwidth sequence that satisfies the conditions

of Theorem 3.1 is h - cn 6  with 6 > 1/4.

The next theorem gives some conditions for which Qn and Qn are

asymptotically uniformly equivalent in mean square.
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Theorem 3.2. Suppose F and H are continuous and (h.1), (K.1), and (K.3)0

hold. Assume E(X2q) < - for some q > 1, where X min{X0 ,U . Let n

be such that 1-F (n)][l-H(n)] > 0 and let T - F (). Then for all

T c [OT lira E[ sup Q 1(p)2] _ 0, provided n 1 / 2h4 4 -0 as

n-- O _sp<T

n G oo.

4. Proofs of Theorems

The following two lemmas will be needed in the proof of Theorem 3.1.

In this section, {K(st): 0 S s 5 1, t > 01 will denote the generalized

Kiefer process as stated by Csorgo_ (1983, Ch. 8).

Lemma 1. For 0 < p < T, where T < 1, and 6 < minT - p,p), as

n-4~

sup fn-1 /2[K(p+h,n) - K(p,n)]I - 0 in probability.

Jh1<6

The proof of Lemma 1 follows the same argument as the proof of Theorem 8.2.1

of Csorgo" (1983).

Lemna 2. Suppose the derivative fV is continuous at E and f (Q ) > 0.
0 p o p

Under assumptions (h.1), (K.1), (K.2), (F.1) and (F.2), for 0 < p < 1,

if' [qn(t) - qn(p)]h-1 K(th )dt 0 in probability
n

as n -, where qn(t) - n/2 [ (t) - Q°(t)] denotes the product-limit

quantile process.

Proof. For any given 6 > 0, there exists N such that when n a N,
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14 [q(t)- qqn(p)] h' 1 K(t-)dtd
n

-IfA(6[%(t) -q.(p)] hn1 Jc(-jR)dtJ

< sup Iqn(t) - qn(p)l, (4.1)
tcA(6)

where A(6) - [p-6, p+6]. By the conditions on f0, for 6 sufficiently

small, f o(Q0 (t)) > 0 for all t c A(6). Hence, the right-hand-side of (4.1)

is less than or equal to

sup Jin(t) - 0n(P) .I 1
tcA(6) f o(Q (t))

+ sup I0n(p 1 1 1

tEA(6) f (Q (t)) f (Q (p))0 0

where 0n(t) = fo(Q°(t))qn(t).

Let

a- sup I 1 and b sup I 1 1rcA(6) f o(Q°0(t)) tcA(6) f o(Q°0(0)) fo(Q°0(p))

From Corollary 1 of Cheng (1981), since f0  is continuous at Eo 0 n(p) Z

in distribution as n - -, where Z is a normally distributed random variable

2 2~ -02 *
with mean zero and variance a - (l-p) fOP [I-F(u)]-  dF (u),

with 1-F(u) - (1-F (u)][l-H(u)] and FP(u) - P(Xi < u, A, 1). Therefore,
00

sup In(p)[ 1 1 r. bjOn(P)l (4.2)
tEA() n fo(Q°(t)) f o(Q (p))

and for given e > 0
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lir sup P(In(p)I > c/b) 5 P(IZi > E/b) < bo2/ .  (4.3)
rr c

Now,

sup 10(t) - a Cp)-I : f < a sup 10 (t) - (P)I
teA(6) f (Q (t)) tcA(6)

< a { sup 10n(t) - n-1/2 K(t,n)l
tcA(6)

+ sup Ion(p) - n-1/ 2 K(p,n)!
tEA(6)

+ sup In-1 /2[K(pn) - K(t,n)]j}. (4.4)
tEA(6)

For small enough 6, p + 6< T < 1 and p -6 0, so that by Corollary 8.3.3

of Csorgo- (1983) as n +

sup on (t) - n-1/2 K(t,n)I + 0 in probability

tEA(6)

and

sup In (p) - n-1/2 K(p,n)J + 0 in probability.
tEA(S)

By Lemma 8.2.1 of Csorgo (1983) (or Berkes and Philipp, 1977) with

0 - t < tI M n, letting B(s) - n- 1/2 K(s,n), 0 < s < 1,

sup IB(p) - B(t)J = sup JB(p+h) - B(p)1,
tcA(6) h1<6

which by Lemma I converges to zero in probability for sufficiently small 6.

Therefore, (4.4) converges to zero in probability as n -) -.

Finally, since b depends on 6, letting b become arbitrarily small

gives from (4.2) and (4.4) that



sup J (p)[ I - ]J +0 in probability.
tEA(6) f o(Q (t)) fo(Q (p))

Thus, the result follows. ///

Proof of Theorem 3.1. Analogous to the beginning of the proof of

Theorem 1 of Yang (1985), write

n IQn(p) - QO(p)] = folq(t) _q

n

+ n /2[flQ°(t)hn I K(L-)dt - Q (p)] + qn(p), (4.5)
n

where q n(t) = n /2[Q(t) - Q(t)] as in Lemma 2.

From Lemma 2, the first term on the right hand side of (4.5) is o (1),p

which means that it converges to zero in probability as n + m. Similar to

Yang's (1985)equation (10),

nl/ 2 [Qo (t)hnl K(t-p)dt - QO (p)]

n

1n/2h2 1l/2h2 o"

-- o n h ) + n hn Q (p) f - K(t)dt. (4.6)
n n 2

With the assumption that n h - 0 as n -, (4.6) is also 0 p(1.

Therefore, by Corollary 1 of Cheng (1981), the conclusion of the theorem

follows. ///

Proof of Theorem 3.2. For 0 5 p < T, write

-I n Si-P Si
Qn(p) - Qn(p) = h- E Z [s K( ) - s K( dt].
nQ nip ) - f Bi hn i-i n

,

When si > 0, that is, Zi is uncensored, let Si be an interior point of

the interval (Sil ,Si) with probability one so that

• "- '. '"" -'""''","'"'" '-'-",".' -","'"'"'% . '.'.',".',' """''J"" '."b "' "' ' "" '"' " "' '"-"J -7 " ". '","---
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i-S

*K((S*-p)/h - fS_ K((t-p)/hn)dt almost surely.

Then by condition (K.3), letting IA denote the indicator function of the

set A,

1n

Q )- IIo (p) S h- I  E siZiIK((Si-p)/hn)n i=l

- K((Si-P)/hn)II[0,T] (P) I S.-ch ,Ill (P)
n

-2 n (p) (P)
I S -S i II(,p) *-h1

n
r2 [ p i[S _SCh n(p) almost surely.

So

4 2
Q(p)- Qn(P)1 2 I[o,T](p) 5 r2h4 (E Z2 i  (p) I n' (p)) (4.7)

Now,

E 2 s 3[S1h(,1 (p)

i i [[,T]( S-chl233

S n+l2  (IF n(Z) - F (Zi)I+IF (Zi)-F n(Z) j)3 I[0,T](p) I[S(p 2 Chn, p). (4.8)

* where g(x-) denotes the limit from the left at x of the function g.

There is an N such that for all n a N, T + ch < T and
n

TN<Fo~i-e) where TN =-T + ch.. For all such n's

No 1

'%*4*-. . . . . . ." ,""" " p q "*. °- *" " ' - v.% .•% o-.
• 

•.o...,. ,•. . . . . . . o . .
• " " '*"# " "@ ,. " .".","o". . -. " " ." - .- .-.-. . . . . . . . .. . * p.."
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Z Zi_..IF (Z) F F(Z )I + IF (Z) Az )I 3 Pin 0 F(0 ) I [OT] (p)i ch I(P)

S E2 sup I (x) - F(x)1 3 , (4.9)
O8x: Q n(TN) 0

which is independent of p. Notice also that

su IF (x) 13 : sup In(X) (X)13

O~gxs(T N)+c 0 Oqx~gn n(TN)>nj

From the exponential bound in Theorem 2 of Fbldes and Rejtb (1981), for any

r 1, n sup IF (x) - F(x))r, n 2 11 is uniformly integrable, Also,

3/2 rE(n I~.)

= n3r/2P[Qn(TN) > n-E]

3r/2-l-= n/P[Q(TN) - (TN) > n - (TN)-e ] .
Qn N 0 N0

" Letting y - ri F- F(TN) - , where e is chosen so that y > 0,

[ TN - (TN>Y)

: P TN  F n( -)

" P[TN - Fo(-0) > F (Ti-c) - F (n-)]
0n

:5 PJF (ri-c) F F(yi-e)I > F (n-c) TNJ.n 0 0



* - ~~12 '... .

By the same exponential bound as in Theorem 2 of lY61des and RejtZ (1981),

as n

E(n 3/2 1 [ ~(T N)>n_-c]) r 0.

1/2)r

Therefore, {(nI/2 sup IFn(x)-Fo(x)r) r, n : 11 is uniformly integrable.
Ogxs(TN) +C

By hypothesis, E(X q) <. for some q > 1, so {(n E z n a 1) is1

uniformly integrable. Thus,

" for 1+1 =1,s q

3/2 1(x)_F (x)13 _,n n Z2)
E(n sup I zi)

Osx<' (Tn)+e 1n/ n

< (E(n3'2 sup IFn(X)-Fo() 13O1wl E((n -1 E ZO<_0x_<k (TN)+ c

' 0(1). (4.10)

* Therefore, from (4.7) - (4.10), by the hypothesis n h/2h 4
n

E[ sup Qn(p) - n(p) o(1),
O~p T

completing the proof. I/I
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